Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(45): 11992-11997, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078391

RESUMO

Proliferative kidney disease (PKD) is a major threat to wild and farmed salmonid populations because of its lethal effect at high water temperatures. Its causative agent, the myxozoan Tetracapsuloides bryosalmonae, has a complex lifecycle exploiting freshwater bryozoans as primary hosts and salmonids as secondary hosts. We carried out an integrated study of PKD in a prealpine Swiss river (the Wigger). During a 3-year period, data on fish abundance, disease prevalence, concentration of primary hosts' DNA in environmental samples [environmental DNA (eDNA)], hydrological variables, and water temperatures gathered at various locations within the catchment were integrated into a newly developed metacommunity model, which includes ecological and epidemiological dynamics of fish and bryozoans, connectivity effects, and hydrothermal drivers. Infection dynamics were captured well by the epidemiological model, especially with regard to the spatial prevalence patterns. PKD prevalence in the sampled sites for both young-of-the-year (YOY) and adult brown trout attained 100% at the end of summer, while seasonal population decay was higher in YOY than in adults. We introduce a method based on decay distance of eDNA signal predicting local species' density, accounting for variation in environmental drivers (such as morphology and geology). The model provides a whole-network overview of the disease prevalence. In this study, we show how spatial and environmental characteristics of river networks can be used to study epidemiology and disease dynamics of waterborne diseases.


Assuntos
Briozoários/parasitologia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Nefropatias/veterinária , Myxozoa/patogenicidade , Truta/parasitologia , Animais , Ecossistema , Água Doce/parasitologia , Interações Hospedeiro-Parasita , Nefropatias/parasitologia , Myxozoa/metabolismo , Myxozoa/fisiologia
2.
Mol Biol Evol ; 34(7): 1551-1556, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28333349

RESUMO

Myxozoans are a large group of poorly characterized cnidarian parasites. To gain further insight into their evolution, we sequenced the mitochondrial (mt) genome of Enteromyxum leei and reevaluate the mt genome structure of Kudoa iwatai. Although the typical animal mt genome is a compact, 13-25 kb, circular chromosome, the mt genome of E. leei was found to be fragmented into eight circular chromosomes of ∼23 kb, making it the largest described animal mt genome. Each chromosome was found to harbor a large noncoding region (∼15 kb), nearly identical between chromosomes. The protein coding genes show an unusually high rate of sequence evolution and possess little similarity to their cnidarian homologs. Only five protein coding genes could be identified and no tRNA genes. Surprisingly, the mt genome of K. iwatai was also found to be composed of two chromosomes. These observations confirm the remarkable plasticity of myxozoan mt genomes.


Assuntos
Myxozoa/genética , Animais , Sequência de Bases , Cromossomos/genética , DNA Mitocondrial/genética , Evolução Molecular , Genoma Mitocondrial/genética , Mitocôndrias/genética , Dados de Sequência Molecular , Myxozoa/metabolismo , Filogenia
3.
Parasitol Res ; 114(6): 2301-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25786607

RESUMO

Tetracapsuloides bryosalmonae is an enigmatic endoparasite which causes proliferative kidney disease in various species of salmonids in Europe and North America. The life cycle of the European strain of T. bryosalmonae generally completes in an invertebrate host freshwater bryozoan and vertebrate host brown trout (Salmo trutta) Linnaeus, 1758. Little is known about the gene expression in the kidney of brown trout during the developmental stages of T. bryosalmonae. In the present study, quantitative real-time PCR was applied to quantify the target genes of interest in the kidney of brown trout at different time points of T. bryosalmonae development. PCR primers specific for target genes were designed and optimized, and their gene expression levels were quantified in the cDNA kidney samples using SYBR Green Supermix. Expression of Rab GDP dissociation inhibitor beta, integral membrane protein 2B, NADH dehydrogenase 1 beta subcomplex subunit 6, and 26S protease regulatory subunit S10B were upregulated significantly in infected brown trout, while the expression of the ferritin M middle subunit was downregulated significantly. These results suggest that host genes involved in cellular signal transduction, proteasomal activities, including membrane transporters and cellular iron storage, are differentially upregulated or downregulated in the kidney of brown trout during parasite development. The gene expression pattern of infected renal tissue may support the development of intraluminal sporogonic stages of T. bryosalmonae in the renal tubular lumen of brown trout which may facilitate the release of viable parasite spores to transmit to the invertebrate host bryozoan.


Assuntos
Doenças dos Peixes/parasitologia , Ferro/metabolismo , Nefropatias/parasitologia , Myxozoa/metabolismo , Animais , Transporte Biológico/fisiologia , Regulação da Expressão Gênica/fisiologia , Rim/parasitologia , Nefropatias/metabolismo , Estágios do Ciclo de Vida , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Truta/parasitologia
4.
BMC Evol Biol ; 14: 205, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25262812

RESUMO

BACKGROUND: Myxozoa are a diverse group of metazoan parasites with a very simple organization, which has for decades eluded their evolutionary origin. Their most prominent and characteristic feature is the polar capsule: a complex intracellular structure of the myxozoan spore, which plays a role in host infection. Striking morphological similarities have been found between myxozoan polar capsules and nematocysts, the stinging structures of cnidarians (corals, sea anemones and jellyfish) leading to the suggestion that Myxozoa and Cnidaria share a more recent common ancestry. This hypothesis has recently been supported by phylogenomic evidence and by the identification of a nematocyst specific minicollagen gene in the myxozoan Tetracapsuloides bryosalmonae. Here we searched genomes and transcriptomes of several myxozoan taxa for the presence of additional cnidarian specific genes and characterized these genes within a phylogenetic context. RESULTS: Illumina assemblies of transcriptome or genome data of three myxozoan species (Enteromyxum leei, Kudoa iwatai, and Sphaeromyxa zaharoni) and of the enigmatic cnidarian parasite Polypodium hydriforme (Polypodiozoa) were mined using tBlastn searches with nematocyst-specific proteins as queries. Several orthologs of nematogalectins and minicollagens were identified. Our phylogenetic analyses indicate that myxozoans possess three distinct minicollagens. We found that the cnidarian repertoire of nematogalectins is more complex than previously thought and we identified additional members of the nematogalectin family. Cnidarians were found to possess four nematogalectin/ nematogalectin-related genes, while in myxozoans only three genes could be identified. CONCLUSIONS: Our results demonstrate that myxozoans possess a diverse array of genes that are taxonomically restricted to Cnidaria. Characterization of these genes provide compelling evidence that polar capsules and nematocysts are homologous structures and that myxozoans are highly degenerate cnidarians. The diversity of minicollagens was higher than previously thought, with the presence of three minicollagen genes in myxozoans. Our phylogenetic results suggest that the different myxozoan sequences are the results of ancient divergences within Cnidaria and not of recent specializations of the polar capsule. For both minicollagen and nematogalectin, our results show that myxozoans possess less gene copies than their cnidarian counter parts, suggesting that the polar capsule gene repertoire was simplified with their reduced body plan.


Assuntos
Colágeno/genética , Galectinas/genética , Myxozoa/genética , Animais , Colágeno/metabolismo , Evolução Molecular , Galectinas/metabolismo , Myxozoa/metabolismo , Filogenia
5.
PLoS One ; 6(12): e29091, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22205999

RESUMO

BACKGROUND: The class Myxosporea encompasses about 2,400 species, most of which are parasites of fish and cause serious damage in aquaculture. Due to the concerns about food safety issues and limited knowledge of Myxozoa life cycle and fish immune system, no chemicals, antibiotics or immune modulators are available to control myxozoa infection. Therefore, little can be done once Myxozoa establishment has occurred. METHODOLOGY/PRINCIPAL FINDINGS: In this paper we isolated Aeromonas veronii CD3 with significant myxospore shell valve-degrading ability from pond sediment. A 3,057-bp full-length chitinase gene was consequently cloned, and the corresponding mature, recombinant chitinase (ChiCD3) produced by Escherichia coli had substantial chitinase activity. The deduced sequence of ChiCD3 contained one catalytic domain, two chitin-binding domains, and one putative signal peptide. ChiCD3 had an optimal activity at 50°C and pH 6.0, and retained more than 50% of its optimal activity under warm water aquaculture conditions (∼30°C and pH ∼7.0). After incubation with ChiCD3, 38.0±4.8% of the myxospores had damaged shell valves, whereas myxospores incubated with commercially available chitinases remained intact. CONCLUSION/SIGNIFICANCE: This study reveals a new strategy to control myxozoan disease. ChiCD3 that has capacity to damage the shell valve of myxospores can be supplemented into fish feed and used to control Myxozoa-induced diseases specifically.


Assuntos
Aeromonas/enzimologia , Quitinases/farmacologia , Myxozoa/efeitos dos fármacos , Aeromonas/genética , Aeromonas/isolamento & purificação , Sequência de Aminoácidos , Animais , Quitinases/química , Quitinases/genética , Quitinases/metabolismo , Clonagem Molecular , Cinética , Dados de Sequência Molecular , Myxozoa/anatomia & histologia , Myxozoa/isolamento & purificação , Myxozoa/metabolismo , Doenças Parasitárias em Animais/tratamento farmacológico , Análise de Sequência , Esporos/efeitos dos fármacos , Esporos/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...